Депозитный калькулятор в Excel

Депозитный калькулятор excel. Депозитный калькулятор вкладов в Excel

Депозитный калькулятор в Excel

Я обещала облегчить вашу учетную участь и рассказать вам о том, как обычный Excel может помочь с выбором депозита . Причем, выгодного вам, а не только банку. Обещала – выполняю. Следуя моей инструкции, вы легко сможете определить, какие условия по банковским вкладам принесут вам наибольший доход.

За расчет потенциальной доходности в Microsoft Excel отвечает специальная функция БС (Будущая Стоимость (Future Value (FV) – о ней мы говорили ). Для того, чтобы ее вызвать, нажмите на символ f x ,слева от строки ввода значений и адресов ячеек.

В открывшемся Мастере функций в строке поиска функций введите БС и нажмите Ввод. Кликните мышью на подсвеченной синим цветом строке БС, как показано ниже.

Составляющим формулы расчета будущей стоимости FV = PV(1+r) nв Excel соответствуют следующие функции:

Заполняем (вручную или указав адреса соответствующих ячеек) поля данными из нашего примера. Напомню, что мы решили открыть депозит, разместив на нем 10 000 рублей сроком 5 лет и под 10% годовых.

Ставку по вкладу указываем в виде десятичной дроби, т.е. 10% превратятся в 0,1. В Кпер ставим количество лет – у нас вклад на 5 лет, значит 5. Поле Плт оставляем пустым. В поле ПС начальную сумму вклада указываем со знаком “минус”, т.к. мы эти деньги отдаем, а не получаем.

Поле Тип заполняем с учетом того, как производится выплата процентов по нашему вкладу:

  • если в конце срока (на языке финансистов такой поток платежей называется постнумерандо), то ставим “0” или оставляем поле пустым;
  • если в начале срока (на языке финансистов такой поток платежей называется пренумерандо), то ставим “1”.

В случае если проценты по вкладу начисляются ежемесячно или ежеквартально, то в поле Ставка годовую процентную ставку следует разделить на 12 или 4 соответственно в виде десятичной дроби. Вместе с этим нужно внести изменения в Кпер, пересчитав количество выплат: при ежемесячном начислении в течение 5 лет ставим 60 (12 мес. х 5 лет); при квартальном – 20 (4 кв. х 5 лет).

А теперь: внимание – вопрос. Как изменится доходность нашего вклада в случае начисления банком сложных процентов в конце каждого месяца, а не года, как мы считали до этого, на протяжении 5 лет? Давайте посмотрим. Напомню, до этого у нас получалась сумма в размере 16 105 руб. Заполняем поля и нажимаем “ОК”.

Получаем 16 453 рубля. Как видите, разница 343 рубля. А главное: чем больше сумма вашего вклада и время его размещения, тем ощутимей будет прибавка. Такова магия сложных процентов. Отсюда – вывод. Проценты по вашему вкладу должны:

  • капитализироваться;
  • капитализироваться ежемесячно.

Чем чаще начисляются проценты и добавляются к сумме вашего вклада, тем лучше работают ваши деньги. Кстати, хотите узнать, как скоро ваш вклад удвоится? Нет ничего проще. Воспользуйтесь правилом 72.

Разделите число 72 на предлагаемую банком процентную ставку, и вы получите то число лет, которое нужно для увеличения ваших вложений в 2 раза.

А сейчас (барабанная дробь) испытайте чувство гордости за себя. Потому что теперь вы можете рассчитать это в Excel. Для этого вызовите функцию Кпер, заполните данные из нашего примера (10% годовых, 5 лет, выплата процентов в конце года) и добавьте в поле БС ожидаемую сумму вклада в размере 20 000 руб. (10 000 руб. х 2). Вуаля!

А еще есть правило волшебной двадцатки. Суть его в том, что для обеспечения завтра того уровня дохода, к которому вы привыкли сегодня, вам нужна сумма в 20 раз превышающая ваш годовой доход. Посчитайте и впечатлитесь полученной цифрой.

В данной статье представлены основные возможности Депозитного калькулятора вклада в Excel.Данный калькулятор подходит для расчета вкладов ВТБ, Сбербанка, банка Тинькофф, Райффайзенбанка и других банков.

Скачать калькулятор в Excel можно по ссылке .

Основные возможности, которые предоставляет калькулятор вкладов в Excel

  1. Расчет вклада с помесячной и годовой капитализацией
  2. Расчет валютных и рублевых вкладов.
  3. Расчет суммы вклада в конце срока
  4. Расчет процентов по вкладу.
  5. Учет налогов, если ставка по вкладу превышает ставку, установленную ЦБ.
  6. Достоинства данного калькулятора — что его можно использовать офлайн, т.е. без выхода в интернет.

Калькулятор вкладов онлайн — расчет вкадов со множеством параметров

Калькулятор вкладов

Источник: https://yurlkink.ru/kredit-na-biznes/depozitnyi-kalkulyator-excel-depozitnyi-kalkulyator-vkladov-v-excel.html

Депозитный калькулятор excel. Расчет процентов по вкладу в Excel

Депозитный калькулятор в Excel

Скачать калькулятор вкладов для Windows 10 – это то, что нужно сделать в первую очередь, когда вы подбираете банк, куда вложить свои деньги.

Программа «Калькулятор вкладов PRO» распространяется бесплатно и позволяет рассчитать доходность банковских вкладов.

Отличие этой утилиты от аналогов – она не привязана к одному конкретному банку, и вы можете выбрать любой вклад, в любом банке, в любой валюте.

Возможности программы

Если вы хотите узнать, сколько принесет ваш вклад, то вам недостаточно просто умножить первоначальную сумму вклада на процентную ставку.

Существует множество параметров, которые напрямую или косвенно влияют на итоговую доходность вклада, к ним относится:

  • Есть ли капитализация процентов;
  • Бонусы при вкладе;
  • Пополнения и снятия со вклада;

Капитализация позволяет превратить прибыльный вклад в еще более доходный, но она делает расчет очень сложным.

Если у вклада есть капитализация, то проценты по вкладу перечисляются на счет и влияют на общую сумму вклада. Это позволяет в итоге получить еще более высокую доходность. Мы рекомендуем использовать эту программу не только для выбора вклада, но и для мониторинга вклада, который вы уже сделали.

Некоторые вклады поддерживают пополнение, а некоторые – снятие средств.

Все это отражается на итоговом размере дохода. Программа позволяет вносить любые изменения во вклад. Доступна сводная информация, например, о размере налогов. Обратите внимание, что резиденты и нерезиденты России платят различные налоги. Данный фактор также учитывается программой «Калькулятор вкладов PRO».

Тонкие настройки программы позволяют отрегулировать расчёты. Например, вы можете указать, что капитализация не просто ежемесячная, но и указать, когда именно зачисляются проценты.

Это важно, если у вас долгосрочный вклад на большую сумму. Разница в расчетах может быть несколько тысяч рублей.

На главном экране со статистикой отображается текущая информация по доходности, а также есть доступ к календарю выплат.

В программе есть данные о ключевой ставке, а также о курсах валют. Все это помогает ориентироваться в финансовом секторе. Есть и отдельная страница, где отображаются все зачисления по вашему вкладу. А если у вас несколько вкладов, то вы можете выбрать для них различное оформление. Программа подойдет для всех устройств на Windows 10 32/64 bit, в том числе и для планшетов.

Я обещала облегчить вашу учетную участь и рассказать вам о том, как обычный Excel может помочь с выбором депозита . Причем, выгодного вам, а не только банку. Обещала – выполняю. Следуя моей инструкции, вы легко сможете определить, какие условия по банковским вкладам принесут вам наибольший доход.

За расчет потенциальной доходности в Microsoft Excel отвечает специальная функция БС (Будущая Стоимость (Future Value (FV) – о ней мы говорили ). Для того, чтобы ее вызвать, нажмите на символ f x ,слева от строки ввода значений и адресов ячеек.

В открывшемся Мастере функций в строке поиска функций введите БС и нажмите Ввод. Кликните мышью на подсвеченной синим цветом строке БС, как показано ниже.

Составляющим формулы расчета будущей стоимости FV = PV(1+r) nв Excel соответствуют следующие функции:

Заполняем (вручную или указав адреса соответствующих ячеек) поля данными из нашего примера. Напомню, что мы решили открыть депозит, разместив на нем 10 000 рублей сроком 5 лет и под 10% годовых.

Ставку по вкладу указываем в виде десятичной дроби, т.е. 10% превратятся в 0,1. В Кпер ставим количество лет – у нас вклад на 5 лет, значит 5. Поле Плт оставляем пустым. В поле ПС начальную сумму вклада указываем со знаком “минус”, т.к. мы эти деньги отдаем, а не получаем.

Поле Тип заполняем с учетом того, как производится выплата процентов по нашему вкладу:

  • если в конце срока (на языке финансистов такой поток платежей называется постнумерандо), то ставим “0” или оставляем поле пустым;
  • если в начале срока (на языке финансистов такой поток платежей называется пренумерандо), то ставим “1”.

В случае если проценты по вкладу начисляются ежемесячно или ежеквартально, то в поле Ставка годовую процентную ставку следует разделить на 12 или 4 соответственно в виде десятичной дроби. Вместе с этим нужно внести изменения в Кпер, пересчитав количество выплат: при ежемесячном начислении в течение 5 лет ставим 60 (12 мес. х 5 лет); при квартальном – 20 (4 кв. х 5 лет).

А теперь: внимание – вопрос. Как изменится доходность нашего вклада в случае начисления банком сложных процентов в конце каждого месяца, а не года, как мы считали до этого, на протяжении 5 лет? Давайте посмотрим. Напомню, до этого у нас получалась сумма в размере 16 105 руб. Заполняем поля и нажимаем “ОК”.

Получаем 16 453 рубля. Как видите, разница 343 рубля. А главное: чем больше сумма вашего вклада и время его размещения, тем ощутимей будет прибавка. Такова магия сложных процентов. Отсюда – вывод. Проценты по вашему вкладу должны:

  • капитализироваться;
  • капитализироваться ежемесячно.

Чем чаще начисляются проценты и добавляются к сумме вашего вклада, тем лучше работают ваши деньги. Кстати, хотите узнать, как скоро ваш вклад удвоится? Нет ничего проще. Воспользуйтесь правилом 72.

Разделите число 72 на предлагаемую банком процентную ставку, и вы получите то число лет, которое нужно для увеличения ваших вложений в 2 раза.

А сейчас (барабанная дробь) испытайте чувство гордости за себя. Потому что теперь вы можете рассчитать это в Excel. Для этого вызовите функцию Кпер, заполните данные из нашего примера (10% годовых, 5 лет, выплата процентов в конце года) и добавьте в поле БС ожидаемую сумму вклада в размере 20 000 руб. (10 000 руб. х 2). Вуаля!

А еще есть правило волшебной двадцатки. Суть его в том, что для обеспечения завтра того уровня дохода, к которому вы привыкли сегодня, вам нужна сумма в 20 раз превышающая ваш годовой доход. Посчитайте и впечатлитесь полученной цифрой.

В данной статье представлены основные возможности Депозитного калькулятора вклада в Excel.Данный калькулятор подходит для расчета вкладов ВТБ, Сбербанка, банка Тинькофф, Райффайзенбанка и других банков.

Скачать калькулятор в Excel можно по ссылке .

Два простых способа сделать формулу расчета сложных процентов в Excel. Финансовый анализ и инвестиционный анализ предприятия

Депозитный калькулятор в Excel

Многие, наверное, слышали про проценты, которые начисляют в банке на вложенный депозит.

Как говорил А. Энштейн: «Сложные проценты – самая мощная сила в природе». Разберем более подробно виды и механизмы начисления процентов.

Перед тем как приступить к вычислению процентов введем базовые понятия. Проценты начисляются на капитал и его, как правило, обозначают буквой P, от английского слова principal.

Следующим понятием является частота начисления процентов – это отчетный временной период, в который банк увеличивает капитал вкладчика. Процентная ставка – величина самого процента, обозначается латинской буквой r от английского слова rate.

Период вложениявремя, на которое был сделан вклад в банк.

Существует два вида процентов: сложные и простые. Простые проценты представляют собой начисление процентов на первоначальный капитал в конце периода вложения. В итоге рост капитала напоминает арифметическую прогрессию.

При сложном проценте проценты начисляются на присоединенный капитал, то есть каждом периоде проценты будут начисляться на увеличенный капитал. Приведем пример, во втором периоде начисления процентов, процент будет начислен не только на первоначальный капитал, но и на сумму, полученную в предыдущем периоде.

В итоге рост капитала напоминает экспоненту.
В различных источниках, сложные проценты имеют разные названия.

  • Эффективные проценты
  • Проценты на проценты
  • Композиционный процент
  • с учетом капитализации
  • Норма доходности с учетом реинвестирования

Рассчитаем сложные и простые проценты на реальном примере:Предположим, есть два брата, и у обоих на руках есть первоначальный капитал в размере 10000 рублей.

Они решают сделать вклад на 20 лет, первый брат делает вклад на депозитный счет с простой процентной ставкой 9%, а второй делает вклад на счет со сложной процентной ставкой 8%. Начисление процентов происходит в конце каждого года.

И так имеем:P 0 =10000 руб;r 1 =9%;r 2 =7%;t=20 лет.

Осуществим необходимые . Формула расчета простых процентовследующая:

Где: P nt – капитала на конец n-го периода;n – количество периодов начисления процентов;P 0 – начальный капитал;

r – банковская процентная ставка.

Формула расчета сложных процентов следующая:
Где:

t – число реинвестиций (капитализаций) в течение одного года.

В Excel рост капитала двух братье будет выглядеть следующим образом. В колонке «Баланс» представлен рост всего капитала братьев. В первом случае процент брался постоянно от первоначального капитала. Во втором случае процент уже брался от накопленного капитала, то есть полученная прибыль постоянно реинвестировалась.

Если сравнить динамику роста, то можно заметить, что первые года вклад с простыми процентами превосходил вклад со сложными процентами, но к концу 20-го года капитал первого брата увеличился на 280%, тогда как рост депозита второго брата составил 466%. На рисунке, ниже показан рост капитала при различных видах процента.

Что бы получить высокую доходность при сложном проценте необходимо ждать длительное время, но так как российскую экономику постоянно штормит (например: кризис 1998 г., кризис 2008 г.) то о долгосрочных вложениях думать не приходится. Помимо кризисов и других экономических потрясений, ежегодный рост инфляции довольно высок и прибыль, полученная при помощи сложных процентов сводиться к нулю.

Если сравнить банковские процентные вклады с акциями, то по норме доходность акции значительно превосходят доходность по банковским вкладам, но риск акций выше, чем у вклада.

Но если учесть, что многие банки в России получают прибыль за счет активной деятельности на , то инвестору выгоднее самому осуществлять инвестиционную деятельность в развивающихся отраслях, чем отдавать свой капитал в банки, которые будут получать сверх прибыли от управления его же капиталом.

Так же можно заметить, что сильные обвалы и потрясения на фондовом рынке случаются как правило во время кризисов, когда потери максимальные, но и многие банки во время сильных кризисов лопаются, что тоже ведет тоже к потерям, поэтому использование банковских вкладов как сверхнадежные вложения неактуально.

Если резюмировать мое отношение к банковским процентным вкладам, то они могут выступать в роли сохранения первоначальной ценности капитала (с небольшим риском), но не как не являются механизмом получения сверхприбыли.

Автор:ЖдановИван
©

В данной статье представлены основные возможности Депозитного калькулятора вклада в Excel.Данный калькулятор подходит для расчета вкладов ВТБ 24.

Скачать калькулятор в Excel можно по ссылке .

Сложные проценты в MS EXCEL. Постоянная ставка

Депозитный калькулятор в Excel

Рассмотрим Сложный процент (Compound Interest) – начисление процентов как на основную сумму долга, так и на начисленные ранее проценты.

Немного теории

Владелец капитала, предоставляя его на определенное время в долг, рассчитывает на получение дохода от этой сделки. Размер ожидаемого дохода зависит от трех факторов: от величины капитала, предоставляемого в кредит, от срока, на который предоставлен кредит, и от величины ссудного процента или иначе процентной ставки.

Существуют различные методы начисления процентов. Основное их различие сводится к определению исходной суммы (базы), на которую начисляются проценты. Эта сумма может оставаться постоянной в течение всего периода или меняться. В зависимости от этого различают метод начисления по простым и сложным процентам.

При использовании сложных ставок процентов процентные деньги, начисленные после каждого периода начисления, присоединяются к сумме долга.

Таким образом, база для начисления сложных процентов в отличие от использования простых процентов изменяется в каждом периоде начисления.

Присоединение начисленных процентов к сумме, которая послужила базой для их начисления, называется капитализацией процентов. Иногда этот метод называют «процент на процент».

В файле примера приведен график для сравнения наращенной суммы с использованием простых и сложных процентов.

В этой статье рассмотрим начисление по сложным процентам в случае постоянной ставки. О переменной ставке в случае сложных процентов читайте здесь.

Начисление процентов 1 раз в год

Пусть первоначальная сумма вклада равна Р, тогда через один год сумма вклада с присоединенными процентами составит =Р*(1+i), через 2 года =P*(1+i)*(1+i)=P*(1+i)2, через n лет – P*(1+i)n. Таким образом, получим формулу наращения для сложных процентов: S = Р*(1+i)n где S – наращенная сумма, i – годовая ставка, n – срок ссуды в годах,

(1+ i)n – множитель наращения.

Начисление процентов несколько раз в год

В рассмотренном выше случае капитализация производится 1 раз в год. При капитализации m раз в год формула наращения для сложных процентов выглядит так: S = Р*(1+i/m)(n*m) i/m – это ставка за период.

На практике обычно используют дискретные проценты (проценты, начисляемые за одинаковые интервалы времени: год (m=1), полугодие (m=2), квартал (m=4), месяц (m=12)).

В MS EXCEL вычислить наращенную сумму к концу срока вклада по сложным процентам можно разными способами.

Рассмотрим задачу: Пусть первоначальная сумма вклада равна 20т.р., годовая ставка = 15%, срок вклада 12 мес. Капитализация производится ежемесячно в конце периода.

Способ 1. Вычисление с помощью таблицы с формулами Это самый трудоемкий способ, но зато самый наглядный. Он заключается в том, чтобы последовательно вычислить величину вклада на конец каждого периода.

В файле примера это реализовано на листе Постоянная ставка.

За первый период будут начислены проценты в сумме =20000*(15%/12), т.к. капитализация производится ежемесячно, а в году, как известно, 12 мес.
При начислении процентов за второй период, в качестве базы, на которую начисляются %, необходимо брать не начальную сумму вклада, а сумму вклада в конце первого периода (или начале второго). И так далее все 12 периодов.

Способ 2. Вычисление с помощью формулы Наращенных процентов Подставим в формулу наращенной суммы S = Р*(1+i )n значения из задачи. S = 20000*(1+15%/12)12 Необходимо помнить, что в качестве процентной ставки нужно указывать ставку за период (период капитализации).

Другой вариант записи формулы – через функцию СТЕПЕНЬ()

=20000*СТЕПЕНЬ(1+15%/12; 12)

Способ 3. Вычисление с помощью функции БС().


Функция БС() позволяет определить будущую стоимость инвестиции при условии периодических равных платежей и постоянной процентной ставки, т.е.

она предназначена прежде всего для расчетов в случае аннуитетных платежей. Однако, опустив 3-й параметр (ПЛТ=0), можно ее использовать и для расчета сложных процентов.
=-БС(15%/12;12;;20000)

Или так =-БС(15%/12;12;0;20000;0)

Примечание. В случае переменной ставки для нахождения Будущей стоимости по методу сложных процентов используется функция БЗРАСПИС().

Определяем сумму начисленных процентов

Рассмотрим задачу: Клиент банка положил на депозит 150 000 р. на 5 лет с ежегодным начислением сложных процентов по ставке 12 % годовых. Определить сумму начисленных процентов.

Сумма начисленных процентов I равна разности между величиной  наращенной суммы S и начальной суммой Р. Используя формулу для определения наращенной суммы S = Р*(1+i )n, получим: I = S – P= Р*(1+i)n – Р=P*((1+i)n –1)=150000*((1+12%)5-1) Результат: 114 351,25р.

Для сравнения: начисление по простой ставке даст результат 90 000р. (см. файл примера).

Определяем Срок долга

Рассмотрим задачу: Клиент банка положил на депозит некую сумму с ежегодным начислением сложных процентов по ставке 12 % годовых. Через какой срок сумма вклада удвоится?
Логарифмируя обе части уравнения S = Р*(1+i)n, решим его относительно неизвестного параметра n.

В файле примера приведено решение, ответ 6,12 лет.

Вычисляем ставку сложных процентов

Рассмотрим задачу: Клиент банка положил на депозит 150 000 р. с ежегодным начислением сложных процентов. При какой годовой ставке сумма вклада удвоится через 5 лет?

В файле примера приведено решение, ответ 14,87%.

Примечание. Об эффективной ставке процентов читайте в этой статье.

Учет (дисконтирование) по сложным процентам

Дисконтирование основывается на базе концепции стоимости денег во времени: деньги, доступные в настоящее время, стоят больше, чем та же самая сумма в будущем, вследствие их потенциала обеспечить доход.
Рассмотрим 2 вида учета: математический и банковский.

Математический учет. В этом случае решается задача обратная наращению по сложным процентам, т.е. вычисления производятся по формуле Р=S/(1+i )n Величину Р, полученную дисконтированием S, называют современной, или текущей стоимостью, или приведенной величиной S.

Суммы Р и S эквивалентны в том смысле, что платеж в сумме S через n лет равноценен сумме Р, выплачиваемой в настоящий момент. Здесь разность D = S – P называется дисконтом.

Пример. Через 7 лет страхователю будет выплачена сумма 2000000 руб. Определить современную стоимость суммы при условии, что применяется ставка сложных процентов в 15% годовых. Другими словами, известно: n = 7 лет, S = 2 000 000 руб.,

i = 15% .

Решение. P = 2000000/(1+15% )7
Значение текущей стоимости будет меньше, т.к. открыв сегодня вклад на сумму Р с ежегодной капитализацией по ставке 15% мы получим через 7 лет сумму 2 млн. руб.

Тот же результат можно получить с помощью формулы =ПС(15%;7;;-2000000;1)
Функция ПС() возвращает приведенную (к текущему моменту) стоимость инвестиции и рассмотрена здесь.

Банковский учет. В этом случае предполагается использование сложной учетной ставки. Дисконтирование по сложной учетной ставке осуществляется по формуле: Р = S*(1- dсл )n

где dcл – сложная годовая учетная ставка.

При использовании сложной учетной ставки процесс дисконтирования происходит с прогрессирующим замедлением, так как учетная ставка каждый раз применяется к сумме, уменьшенной за предыдущий период на величину дисконта.

Сравнив формулу наращения для сложных процентов S = Р*(1+i )n и формулу дисконтирования по сложной учетной ставке Р = S*(1- dсл )n придем к выводу, что заменив знак у ставки на противоположный, мы можем для расчета дисконтированной величины использовать все три способа вычисления наращения по сложным процентам, рассмотренные в разделе статьи Начисление процентов несколько раз в год.

Источник: https://excel2.ru/articles/slozhnye-procenty-v-ms-excel-postoyannaya-stavka

Скачать программу в эксель депозитный калькулятор. Расчет процентов по вкладу в Excel

Депозитный калькулятор в Excel

Онлайн калькулятор вкладов поможет вам быстро рассчитать проценты по любому вкладу, в том числе с капитализацией, с пополнениями и с учетом налогов, а также покажет график начисления процентов. Если вы планируете открыть вклад, то калькулятор поможет вам заранее рассчитать потенциальную доходность.

Капитализация процентов

При обычном вкладе начисленные проценты банк выплачивает вкладчику ежемесячно (либо с другой периодичностью, оговоренной условиями договора). Это называется «простые проценты».

Вклад с капитализацией (или «сложные проценты») – это условие, при котором начисленные проценты не выплачиваются, а прибавляются к сумме вклада, таким образом увеличивая её.

Общий доход от вклада в этом случае будет выше.

С помощью депозитного калькулятора вы можете сравнить результаты расчёта двух одинаковых вкладов (с капитализацией и без) и увидеть разницу.

Эффективная процентная ставка по вкладу

Эта характеристика актуальна только для вкладов с капитализацией процентов. В связи с тем, что проценты не выплачиваются а идут на увеличение суммы вклада, очевидно, что если ежемесячно возрастает сумма вклада, то и вновь начисленные на эту сумму проценты также будут выше, как и конечный доход.

Формула расчета эффективной ставки:

где N – количество выплат процентов в течение срока вклада,

T – срок размещения вклада в месяцах.

Эта формула не универсальна. Она подходит только для вкладов с капитализацией 1 раз в месяц, период которых содержит целое количество месяцев. Для других вкладов (например вклад на 100 дней) эта формула работать не будет.

Однако есть и универсальная формула для рассчета эффективной ставки. Минус этой формулы в том, что получить результат можно только после рассчета процентов по вкладу.

Эффективная ставка = (P / S) * (365 / d) * 100

гдеP – проценты, начисленные за весь период вклада,S – сумма вклада,

d – срок вклада в днях.

Эта формула подходит для всех вкладов, с любыми сроками и любой периодичностью капитализации. Она просто считает отношение полученного дохода к начальной сумме вклада, приводя эту величину к годовым процентам. Лишь небольшая погрешность может присутствовать здесь, если период вклада или его часть выпала на високосный год.

Именно этот метод используется для рассчета эффективной ставки в представленном здесь депозитном калькуляторе.

Налог на доход по вкладам

Налоговый кодекс Российской Федерации предусматривает налогооблажение вкладов в следующих случаях:

  • Если процентная ставка по рублевому вкладу превышает значение ключевой ставки ЦБ РФ на момент заключения или пролонгации договора, увеличенной на 5 процентных пунктов.
  • Если процентная ставка по валютному вкладу превышает 9%.

Ставка налога составляет 35% для резидентов РФ и 30% для нерезидентов.

При этом налогом облагается не весь доход, полученный от вклада, а только часть, полученная в результате превышения процентной ставки по вкладу пороговой ставки.

Для того, чтобы рассчитать налоговую базу (сумму, облагаемую налогом), нужно сначала рассчитать проценты налисленные по номинальной ставке вклада, а затем сделать аналогичный расчет по пороговой ставке.

Разница этих сумм и будет являться налоговой базой. Для получения величины налога остается умножить эту сумму на ставку налога.

Наш депозитный калькулятор рассчитает ваш вклад с учетом налогов.

Я обещала облегчить вашу учетную участь и рассказать вам о том, как обычный Excel может помочь с выбором депозита . Причем, выгодного вам, а не только банку. Обещала – выполняю. Следуя моей инструкции, вы легко сможете определить, какие условия по банковским вкладам принесут вам наибольший доход.

За расчет потенциальной доходности в Microsoft Excel отвечает специальная функция БС (Будущая Стоимость (Future Value (FV) – о ней мы говорили ). Для того, чтобы ее вызвать, нажмите на символ f x ,слева от строки ввода значений и адресов ячеек.

В открывшемся Мастере функций в строке поиска функций введите БС и нажмите Ввод. Кликните мышью на подсвеченной синим цветом строке БС, как показано ниже.

Составляющим формулы расчета будущей стоимости FV = PV(1+r) nв Excel соответствуют следующие функции:

Заполняем (вручную или указав адреса соответствующих ячеек) поля данными из нашего примера. Напомню, что мы решили открыть депозит, разместив на нем 10 000 рублей сроком 5 лет и под 10% годовых.

Ставку по вкладу указываем в виде десятичной дроби, т.е. 10% превратятся в 0,1. В Кпер ставим количество лет – у нас вклад на 5 лет, значит 5. Поле Плт оставляем пустым. В поле ПС начальную сумму вклада указываем со знаком “минус”, т.к. мы эти деньги отдаем, а не получаем.

Поле Тип заполняем с учетом того, как производится выплата процентов по нашему вкладу:

  • если в конце срока (на языке финансистов такой поток платежей называется постнумерандо), то ставим “0” или оставляем поле пустым;
  • если в начале срока (на языке финансистов такой поток платежей называется пренумерандо), то ставим “1”.

В случае если проценты по вкладу начисляются ежемесячно или ежеквартально, то в поле Ставка годовую процентную ставку следует разделить на 12 или 4 соответственно в виде десятичной дроби. Вместе с этим нужно внести изменения в Кпер, пересчитав количество выплат: при ежемесячном начислении в течение 5 лет ставим 60 (12 мес. х 5 лет); при квартальном – 20 (4 кв. х 5 лет).

А теперь: внимание – вопрос. Как изменится доходность нашего вклада в случае начисления банком сложных процентов в конце каждого месяца, а не года, как мы считали до этого, на протяжении 5 лет? Давайте посмотрим. Напомню, до этого у нас получалась сумма в размере 16 105 руб. Заполняем поля и нажимаем “ОК”.

Получаем 16 453 рубля. Как видите, разница 343 рубля. А главное: чем больше сумма вашего вклада и время его размещения, тем ощутимей будет прибавка. Такова магия сложных процентов. Отсюда – вывод. Проценты по вашему вкладу должны:

  • капитализироваться;
  • капитализироваться ежемесячно.

Чем чаще начисляются проценты и добавляются к сумме вашего вклада, тем лучше работают ваши деньги. Кстати, хотите узнать, как скоро ваш вклад удвоится? Нет ничего проще. Воспользуйтесь правилом 72.

Разделите число 72 на предлагаемую банком процентную ставку, и вы получите то число лет, которое нужно для увеличения ваших вложений в 2 раза.

А сейчас (барабанная дробь) испытайте чувство гордости за себя. Потому что теперь вы можете рассчитать это в Excel. Для этого вызовите функцию Кпер, заполните данные из нашего примера (10% годовых, 5 лет, выплата процентов в конце года) и добавьте в поле БС ожидаемую сумму вклада в размере 20 000 руб. (10 000 руб. х 2). Вуаля!

А еще есть правило волшебной двадцатки. Суть его в том, что для обеспечения завтра того уровня дохода, к которому вы привыкли сегодня, вам нужна сумма в 20 раз превышающая ваш годовой доход. Посчитайте и впечатлитесь полученной цифрой.

Скачать калькулятор вкладов для Windows 10 – это то, что нужно сделать в первую очередь, когда вы подбираете банк, куда вложить свои деньги.

Программа «Калькулятор вкладов PRO» распространяется бесплатно и позволяет рассчитать доходность банковских вкладов.

Отличие этой утилиты от аналогов – она не привязана к одному конкретному банку, и вы можете выбрать любой вклад, в любом банке, в любой валюте.

Функция ЭФФЕКТ для расчета годовой процентной ставки в Excel

Депозитный калькулятор в Excel

Функция ЭФФЕКТ в Excel предназначена для расчета фактической годовой процентной ставки (иное название – эффективная ставка), на основе известных данных, таких как номинальная годовая ставка, число периодов начисления сложных процентов, и возвращает соответствующее числовое значение.

Пример 1. Предприниматель получил ссуду в банковской организации на 1 год с эффективной процентной ставкой 23,5%. Определить значение номинальной ставки, если по условию договора выплаты по кредиту необходимо проводить ежемесячно.

Исходная таблица данных:

Связь между значениями эффективной и номинальной ставок описывается следующей формулой:

=(СТЕПЕНЬ(B3+1;1/B2)-1)*B2

Полученный результат:

Проверим полученный результат, проведя пересчет эффективной ставки с помощью функции:

Описание аргументов:

  • B4 – полученное выше числовое значение номинальной ставки;
  • B2 – число периодов погашения.

Результат:

Полученное значение 0,235 соответствует 23,5% (значению эффективной ставки по условию). Расчет номинальной ставки также можно производить с помощью функции НОМИНАЛ.

Пример 2. Вкладчику предложили сделать депозит в банк под 16% годовых (номинальная ставка), при этом расчете производится с использованием сложных процентов (эффективная ставка). По условиям договора вкладчик сможет снять только полученные проценты. Определить сумму к получению, если размер депозита – 1 млн. рублей, капитализация – ежемесячная.

Исходные данные:

Формула для расчета:

=ЭФФЕКТ(B3;B2)*B4

Описание аргументов:

  • B2 – число периодов капитализации;
  • B3 – номинальная ставка;
  • B4 – сумма вклада.

Результат расчетов:

Для сравнения, доход от вклада при использовании простых процентов составил бы 1000000*0,16=160000 рублей, поэтому для вкладчика выгодно использовать предложенный вариант со сложными процентами.

Как посчитать проценты на депозит в Excel для выбора вклада

Пример 3. Два банка предлагают сделать депозитный вклад на одинаковую сумму (250000 рублей) на 1 год при следующих условиях:

  1. Номинальная ставка – 24%, простые проценты, 12 периодов капитализации.
  2. Номинальная ставка 22%, сложные проценты, начисляемые по итогам каждого периода, 4 периода капитализации.

Определить выгодный вариант, отобразить схему выплат.

Исходные данные:

В первом случае таблица выплат выглядит так:

Проценты – постоянная величина, рассчитываемая по формуле:

=$B$2*$B$3/$B$4

Описание аргументов (для создания абсолютной ссылки используйте клавишу F4):

  • $B$2 – начальная сумма вклада;
  • $B$3 – годовая ставка;
  • $B$4 – число периодов капитализации вклада.

Сумма накопленных средств за каждый период рассчитывается как как сумма средств на счету за прошедший период и процентов, начисленных за текущий период. В итоге первый банк начислит 60000 рублей процентов, и вкладчик сможет забрать 310000 рублей.

Таблица начисления процентов по условиям второго банка:

В данном случае проценты не являются фиксированной величиной и зависят от итоговой суммы накоплений за предыдущий период (поэтому ссылка на ячейку L2 – абсолютная):

=L3*$E$3/$E$4

При расчете суммы за каждый период к текущему значению необходимо прибавить проценты за предыдущий период.

Для быстрого расчета итоговой суммы используем формулы:

  1. Первый банк:
  2. Второй банк:

Результаты расчетов:

Несмотря на то, что второй банк предлагает расчет с использованием сложных процентов, предложение первого банка оказалось выгоднее. Если бы число периодов капитализации совпадало (12), во втором банке вкладчик получил бы 310899,1 рублей, то есть больше денег, несмотря на более низкую номинальную процентную ставку.

Особенности использования функции ЭФФЕКТ в Excel

Функция имеет следующий синтаксис:

=ЭФФЕКТ(номинальная_ставка;кол_пер)

Описание аргументов:

  • номинальная_ставка – обязательный аргумент, характеризующий числовое (десятичная дробь) или процентное значение номинальной годовой ставки;
  • кол_пер – обязательный аргумент, характеризующий числовое значения числа периодов за год, на протяжении которых начисляются сложные проценты.

Примечания 1:

  1. Аргумент кол_пер может принимать дробные числа, значения которых будут усечены до целого числа (в отличие от операции округления, при усечении отбрасывается дробная часть).
  2. Каждый из двух аргументов функции ЭФФЕКТ должен быть представлен числовым (или процентным для аргумента номинальная_ставка) значением либо текстовой строкой, которая может быть преобразована в число. При вводе не преобразуемых к числовым значениям текстовых строк и имен, а также данных логического типа функция ЭФФЕКТ будет возвращать код ошибки #ЗНАЧ!.
  3. Аргумент номинальная_ставка принимает значения из диапазона положительных чисел, а кол_пер – из диапазона от 1 до +∞. Если данные условия не выполняются, например, функции =ЭФФЕКТ(0;12) или =ЭФФЕКТ(12%;0) вернут код ошибки #ЧИСЛО!.
  4. Функция ЭФФЕКТ использует для расчетов формулу, которая может быть записана в Excel в виде: =СТЕПЕНЬ(1+(A1/A2);A2)-1, где:
  • A1 – номинальная годовая ставка;
  • A2 – число периодов, в которые происходит начисление сложных процентов.

Примечания 2:

  • Для понимания термина «сложные проценты» рассмотрим пример. Владелец капитала предоставляет денежные средства в долг и планирует получить прибыль, величина которой зависит от следующих факторов: сумма средств, которая предоставляется в долг; длительность периода кредитования (использования предоставленных средств); начисляемые проценты за использование.
  • Проценты могут начисляться различными способами: базовая сумма остается неизменной (простые проценты) и база изменяется при наступлении каждого последующего периода выплат (сложные). При использовании сложных процентов сумма задолженности (прибыли) увеличивается быстрее при одинаковых сумме и периоде кредитования, в сравнении с применением простых процентов (особенно, если периодов начисления процентов (капитализации) достаточно много.
  • Для получения результата в формате процентов необходимо установить соответствующий формат данных в ячейке, в которой будет введена функция ЭФФЕКТ.

Источник: https://exceltable.com/funkcii-excel/primery-funkcii-effekt

Закон и общество
Добавить комментарий